

SCRIPT – PROGRAMMABLE LOGIC
CONTROLS (PLC)

VOLUME I

©LEARNCHANNEL-TV.COM

Learnchannel

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 1

©LEARNCHANNEL-TV.COM
 Learnchannel

Contents

1. Introduction .. 2

2. Structure of PLC .. 3
2.1 Basic structure .. 3
2.2 Functions of the input and output modules ... 4
2.3 Modular and compact structured control devices ... 4

3. Function of a PLC... 6
3.1 Introduction ... 6
3.2 Functioning of the PLC .. 7

4. Introduction in the programming ... 9
4.1. PLC-programming languages ... 9
4.2. Principles of PLC-programming ... 11
4.2.1. Programming contacts NO and NC ... 11
4.2.2. Using flags ... 12
4.2.3. Programming modular ... 13

5. Combinatorial logical control .. 15
5.1. Classification combinatorial control .. 15
5.2. Programming examples ... 16
5.3. Combinatorial control according to disjunctive normal form .. 18
5.4. Simplifying logical circuits .. 20
5.4.1. Simplifying by using Boolean algebra ... 20
5.4.2. Simplifying via KV-diagrams .. 25
5.4.3. Exercises .. 25

6. Introduction in number systems ... 29
6.1. Decimal-system ... 29
6.2. Dual system ... 30
6.3. Hexadecimal system ... 30
6.4. Binary coded Decimal (BCD) ... 31
6.5. Exercises number systems .. 33

7. Appendix.. 34
7.1. The most important data types .. 34

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 2

©LEARNCHANNEL-TV.COM
 Learnchannel

1. Introduction

The computers have taken huge impact in the last 30 years also in automation technology. Programmable

logic controllers replaced the conventional electrical relay controls in modern machines.

 Compare the advantages and disadvantages of PLC compared to the relay control!

 Which PLC manufacturers do you know?

Does it make sense, to

memorize the PLC

instruction set of a particular

manufacturer?

Advantages of a PLC:

 Less space ;

 less electrical power required;

 Reuse;

 Programmable:

 Greater reliability;

 Easy maintenance;

 More flexibility;

Fig 1:
Hard-wired control
(relay control)

Fig 2: PLC

_

_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _

 Allows communication with other CLPs

and microcomputers;

 Less wiring

 Reprogramming possible

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 3

©LEARNCHANNEL-TV.COM
 Learnchannel

2. Structure of PLC

2.1 Basic structure

Basically, a PLC is structured like a computer consisting of a CPU and input and output module. They are

task-neutral mass-produced.

Note:

ROM: _

RAM: _

EPROM: _

EEPROM: _

I1 I2 I3 I4 I5 I6 I7 I8

Input module

O1 O2 O3 O4 O5 O6 O7 O8

Output module

Buffer PII
(Process image input)

Buffer PIO
(Process image output)

System memory
EEPROM

Program memory
RAM

Data memory (e.g. for flag)

Accumulator

Actors

Sensors and switches

System bus

System bus

CPU

+ 24 V

0 V

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 4

©LEARNCHANNEL-TV.COM
 Learnchannel

2.2 Functions of the input and output modules

Notes:

The input and output module with its terminals form the interface between field devices and the CPU. The

signals received by an input module may come from discrete sensors (such as limit switch, pushbutton, or

switch digitizer is 'thumbwheel', etc.) or analog sensors (such as pressure transducers, temperature

transducers, etc.).

The CPU consisting of a microprocessor and a memory system is the major component of the PLC. The CPU

reads the input-signals, executes the logic according to the user program fault routines (if necessary) and

sends signals to the output module.

2.3 Modular and compact structured control devices

Various criteria’s have to be considered to choose the right PLC. You can distinguish PLC´s between

micro, small, medium or large. The most important criteria’s are: functionality, number of inputs and

outputs, cost and physical dimensions.

Actuators Sensors /

Signals

Adaptation Adaptation

M

K1

CPU

Input Processing Output

32

256

1024

+1024

Complexity and costs

Q
u

a
n

ti
ty

 o
f

I
/
O

Micro Small Middle Big

Optokoppler

Von der

CPU 24 V

0 V

Optokoppler

24 V

5 V

0 V

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 5

©LEARNCHANNEL-TV.COM
 Learnchannel

In the context ‘control devices’, the terms 'compact' and 'modular-structured' are used:

Larger control devices are divided in individual modules. This modular system can (starting from a basic

version) assemble PLC systems with different modules together. This allows to adapt the PLC system

precisely according to the application (especially the number of inputs and outputs).

For much simpler control tasks, compactly constructed PLC's are offered. These compact PLC build a closed

unit with a fixed number of inputs and outputs. Example: LOGO S7 von Siemens

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 6

©LEARNCHANNEL-TV.COM
 Learnchannel

3. Function of a PLC

3.1 Introduction

Within a CPU, two different programs are running:

- The operating system

- The user program

The operating system is a part of each CPU and organizes all functions and processes of

the CPU that are not associated with a specific control task. Its responsibilities include:

- Unwinding of cold and warm restart

- Updating of the process image of the inputs and the output

- The call of the user program

- The detection of alarms and alarm calls of Ob´s

- How to handle errors

- Managing memory

- The communication of programming devices and other communication partners

The user program, you must create your own and load it into the CPU. Your application

program is to fulfill the demands of the specific automation task.

Operating

system

Application

program

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 7

©LEARNCHANNEL-TV.COM
 Learnchannel

3.2 Functioning of the PLC

In which way are the instructions of a user program processed by the CPU? To clarify the operation of a PLC,

please write the following program. Watch as the output - which is addressed in the program - behaves when

both inputs are simultaneously activated.

What you see:

Describing the function of a PLC:

// Program 1

Network 1:

A I 124.0

S Q 124.0 // output is set

Network 2:

A I 124.1

R Q 124.0 // output is reset

// Program 2

Network 1:

A I 124.0

R Q 124.0 // output is reset

Network 2:

A I 124.1

S Q 124.0 // output is set

The output of the PLC is switched off!

Instruction 1

Instruction 2

Instruction 3

 ≈ ≈

Instruction n

PII

PIQ

PII process image of the inputs

PIQ process image of the outputs The PLC process the instructions serially

One instruction after another will be

executed beginning with instruction 1.

The PLC works periodically

After executing all the instructions and

setting the PIQ the whole process begins

one more time.

The output of the PLC is switched on!

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 8

©LEARNCHANNEL-TV.COM
 Learnchannel

In this context, two terms describe the speed of the PLC:

 Cycle time

 The cycle time is the time required by the PLC

for a single execution of the program. The cycle

time is composed of

- The processing time of an instruction

- The number of instructions

 reaction time

- The reaction time of a PLC is generally many

times greater than the cycle time. It is

composed of

- Delay time of the input and output modules

- Read-in and read-out time of the process

images

- Cycle time

A remark to the cycle time: The cycle time is an essential feature of a PLC and usually refers to 1 k = 1024

program instructions. Example: In modern PLC, the average processing time of an instruction is about 200

ns.

Instruction 1

Instruction 2

Instruction 3

 ≈ ≈

Instruction n

PII

PIQ

R
ea

ctio
n

 tim
e

C
y

cle tim
e

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 9

©LEARNCHANNEL-TV.COM
 Learnchannel

4. Introduction in the programming

4.1. PLC-programming languages

The classical PLC programming languages are:

 Instruction list (IL)

 Ladder diagram (LD)

 Function Block Diagram (FBD)

Added in the last few years are:

 Sequential Function Chart (SFC)

 Structure control language (SCL)

The characteristics of these programming languages can be seen at the subsequent page!

PLC-Programming languages

Text-oriented Graphical

 IL SCL SFC FBD LD

Fig. 1:

Overview PLC-

programming

languages

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 10

©LEARNCHANNEL-TV.COM
 Learnchannel

Overview Programming languages

PLC-programming language Example characteristics

Function block diagram (FBD) Usually does not contain the entire

instruction set of the PLC

Clear, easy troubleshooting

Developed from the digital technology

Ladder diagram (LD)

 Usually does not contain the entire

instruction set of the PLC

Clear, easy troubleshooting

Horizontal paths are similar to the

circuit diagrams

Instruction list (IL) includes the entire command set

Single instructions in a mnemonic

code

troubleshooting difficult

frequently used

Sequential Function Chart

(SCL)

Command set is very limited

Requires a lot of memory

Clear, easy troubleshooting

Application to sequence controls

Structure controlled language

FUNCTION FC2: REAL
 VAR_INPUT
 X1: REAL
 X2: REAL

 VAR_OUTPUT
 X3: REAL
 END_VAR

 BEGIN
 X3 := X1 + X2;
 END FUNCTION

Clear program structure

Contains the entire instruction set

Developed on the basis of a high level

language (such as Pascal or C)

Step 7

O I 0.0

O I 0.1

AN I 0.3

= M1.0

International

LD % I X 0

OR % I X 0

AND % I X 0

= M1.0

„S1“

„S2“

„STOP“ M1.0

1B2

INIT

1

2

3

S Motor on

D Wait t1 = 2 s

N Cylinder forward

N Cylinder back

START

t1

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 11

©LEARNCHANNEL-TV.COM
 Learnchannel

4.2. Principles of PLC-programming

4.2.1. Programming contacts NO and NC

When creating a program, it should be noted whether the contact (button, sensor ...) is designed as normally

open or normally closed. A signal state ‘1' at the input of the PLC can come from a contact NC or from a

contact NO which is activated. The programmable controller cannot determine the periphery connected to its

input module.

Example: Your task is to query the signal state at the PLC input I124.0 so that the output Q 124.0 is

active when the button is pressed. Programming in FBD!

 Compare activated – not activated presented in FUP

Contact is NO

not
activated

Signal at PLC-input: 0

activated

Signal at PLC-input: 1

Reading the signal

change from 0 to 1

Contact is NC not

activated

Signal at PLC-input: 1

activated

Signal at PLC-input: 0

Reading the signal

change from 1 to 0.

= I 124.0

Q 124.0

= I 124.0

Q 124.0

O

I 124.0 I 124.0

I 124.0 I 124.0

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 12

©LEARNCHANNEL-TV.COM
 Learnchannel

4.2.2. Using flags

Do you want to get interim results (logical combination or calculation) of your program and store these? Then,

a known way of doing this is to use flags. How flags can be used in Step 7 you can see below:

Fig 1: Extract of a S7-program

A flag is a bit in the memory. Regarding PLC, a distinction between retentive and non-retentive flags can be

made:

Non-retentive flags loose their logic state upon failure of the supply voltage.

Retentive flags, however retain their value by buffering the RAM. The use of retentive flags makes sense if

important process data such as levels, quantities, positions, etc. have to be retained in case of a breakdown

in the operating voltage.

Which memory area is retentive or non-retentive, depends on the CPU. This can refer to the appropriate CPU

manual.

M1.0

M1.0

“STOP“

“S1“

“S2“

“enable“

“START
“

&

> 1

&

O “S1“

O “S2“

UN “STOP“

= M1.0

U M1.0

U “enable“

= “START“

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 13

©LEARNCHANNEL-TV.COM
 Learnchannel

4.2.3. Programming modular

Divide your program useful in individual modules on. It is useful, for example, if each program module has its

own function - e.g. module 1 the logic, module 2 the analog processing, Module 3 the command output, etc.

The order and nesting of the block calls is known as call hierarchy. The permissible nesting depth

depends on the CPU.

Step 7 distinguishes the following program modules:

OB Organization Block Ob’s form the interface between the operating system and the application

program. They control the boot up of the PLC, the cyclic call of the user

program, the interrupt call, handle errors, etc.

FC Function FC’s you program yourself. These are program modules without memory

with the possibility of passing parameters.

FB Function Blocks FB’s are also part of the user program but with advantage to have a

“memory”.

DB Data blocks DBs are data areas for storing user data. Step 7 distinguish:

- Instance-Data blocks, are assigned to a function block

- Global Date blocks containing shared data which can also be defined

and used by any blocks

SFB, SFC, internal FB Predefined modules, provided by STEP 7, which you can parameterize

as user.

The program listing
is thick like a book.
How can I create
the program much
clearly?

 DB

 DB

Operating

system

OB 1

FB

FC

FB

SFC

Fig 2: possible call hierarchy in an

user Program

Fig.: paperfolding machine from MBO

Source: MBO.de

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 14

©LEARNCHANNEL-TV.COM
 Learnchannel

Work order:

The motor of a machine can be switched on via the

latching button S1 and switched off by button S2.

Demand: For safety reasons, turn off should be dominant.

Which storage element (RS or SR) you have to choose?

The machine has to be upgraded. The engine should be

turned on in a latching mode by pressing the push-button

S2 or S3. The motor is switched off by pressing the S1

button or if the overcurrent fuse F1 releases (both NC).

Furthermore, the reset signal should be dominant.

Program everything in OB 1. The outputs should be

activated directly without using of markers.

 Now you want to program modular. The logic should be programmed in FC 1, the activation of the outputs

in FC 2. Test your program!

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 15

©LEARNCHANNEL-TV.COM
 Learnchannel

5. Combinatorial logical control

5.1. Classification combinatorial control

Before you go on to program simple combinatorial controls, you should classify this kind of control within the

following overview:

PLC Control

Logical combination
Sequence control

Here the input signals are combined by logical

operations (AND, OR, NOT, timers, memory) to get

one or more output signals. The pure combinatorial

controls are usually simple structured.

Control with a fixed workflow, which

can be divided into individual steps.

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 16

©LEARNCHANNEL-TV.COM
 Learnchannel

5.2. Programming examples

Work order 1: Convert a relay control into a control with PLC

Relay controls are becoming increasingly replaced by popular PLC's for well-known reasons. This should
also be your job here. Write the corresponding PLC program to replace the pictured electric control.

Electrical control circuit symbol table

Work order 2: Change of rotation - indirect

With the following power unit - a so-called H-bridge – you can reverse the rotation of a DC motor.

Functional description:

The motor can started with the S1 button (K1 activated) in counter clockwise rotation (CCR) and with the

button S2 (K2) in clockwise rotation (CR). Condition: The STOP button S0 is not actuated.

The switching of the direction of rotation can be made only after de STOP button S0 has been pressed so

that it can be ensured that the motor has stopped.

component E/A comment

S1 I124.0 Taster “ON” - NO

S2 I124.1 Taster “ON” - NO

S3 I124.2 Taste “OFF” - NC

1Y1 Q124.0 Valve

Fig.: Power unit (H-Bridge) for controlling the DC-

 motor

S1 S2

K1 K2

1S2

1Y1

K1

K2

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 17

©LEARNCHANNEL-TV.COM
 Learnchannel

Fig.: Power unit (H-Bridge) for controlling the DC-

 motor

Fig.: Programm structure

Work order 3: change of rotation - direct

Functional description:
The motor can started with the S1 button (K1 activated) in counter clockwise rotation (CCR) and with the

button S2 (K2) in clockwise rotation (CR). Condition: The STOP button S0 is not actuated. The switching of

the direction of rotation can be done directly from the clockwise rotation into the counter-clockwise rotation

and vice versa. Of course this is possible only for small engines.

Power unit - H-bridge

Programm structure

motor
stop

counter
clockwise
rotation switch S1

switch S0

switch S2

switch S0

Motor
stop

switch S1

switch S0

switch S2

switch S0

switch S1

switch S2

clockwise

rotation

counter
clockwise
rotation

clockwise

rotation

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 18

©LEARNCHANNEL-TV.COM
 Learnchannel

5.3. Combinatorial control according to disjunctive normal form

Often you have multiple switching-on option for an output. Each of these switching option has its own

condition. Here, a solution approach is shown to get a Boolean equation, which is also known as disjunctive

('or') normal form.

Work order: Motor drive with two switches ‘ON’

The motor M1 can be switched on by the locking switches S1 and S2. A motor is turned on when either switch

S1 or switch S2 is turned on. If S1 and S2 are turned on the motor stops. Which steps are necessary to get

the PLC-program?

Step 3: Develop logic circuit from the functional equation:

Step 2: Develop function equation from the truth

table

Of interest are these cases in which the output is

activated (logic `1`)!

M1 = (S1 Λ S2) V (S1 Λ S2)

Step 1: Get a Boolean table

S2 S1 M1

0 0 0

0 1 1

1 0 1

1 1 0

S2 S1

&

&

>

=

M1

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 19

©LEARNCHANNEL-TV.COM
 Learnchannel

Example: 2 out of 3 circuit

An injection molding machine may only start or continue the production process when the required operating

temperature is reached and maintained. As a production stop of this installation during operation is involved

with high costs, the temperature is measured by three sensors. The shut-down should only take place if at

least two of the three temperature sensors report a temperature error (signal '1'). In this manner, unnecessary

shut down can be prevented, which would cause high costs.

 Develop for this system the necessary logic circuit!

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 20

©LEARNCHANNEL-TV.COM
 Learnchannel

5.4. Simplifying logical circuits

Do you take many circuits too complex? If do so, then you can simplify them.

5.4.1. Simplifying by using Boolean algebra

The following rules apply for variables which are used in logical functions. The analogy to the electrical circuit

should help you to work out these rules for yourself:

 Combined with a constant:

Variable combined with itself:

equal to

a

0

Q

& a

 0
Q

You conclude:

a Λ 0 = 0 (1)

You conclude:

a Λ 1 = a (2)

a

1

Q

> a

0
Q

You conclude:

a V 0 = a (3)

a 0

Q

>

a

1
Q

You conclude:

a V 1 = 1 (4)

a 1

Q

& a

1
Q

equal to

equal to

equal to

& a

 a Q

You conclude:

a Λ a = a (5)

> a

a Q

You conclude:

a V a = a (6)

a

a

Q

a a

Q

a

a Q
a

a

Q

a a

Q

corresponde a corresponde a

corresponde a corresponde a

You conclude:

a Λ a = o (7)

You conclude:

a V a = 1 (8)

& a

a Q

>

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 21

©LEARNCHANNEL-TV.COM
 Learnchannel

Law of commutation:

The Law of Commutation says that variables which are linked by 'AND' 'or 'OR' may be interchanged with

each other.

Associative rule:

The associative rule tells you how you can summarize single variables, which are linked to each other by,

AND 'or' OR '. Summarized variables are indicated by parentheses.

a

b

Δ

Q

a b

Q

b

a

Q

b a

Q

Δ

You conclude:

a V b V C = (a V b) V C = a V (b V C) (11)

a b

Q

c a b

Q

c b c

Q

a

You conclude:

a Λ b = b Λ a (9)

You conclude:

a V b = b V a (10)

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 22

©LEARNCHANNEL-TV.COM
 Learnchannel

Law of distribution for calculating with parentheses

You conclude:

(a Λ b) V (a Λ c) = a Λ (b V c) (12)

a

b

Q

a

c

a

b

Q

c

Δ

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 23

©LEARNCHANNEL-TV.COM
 Learnchannel

b

a

a

Law of absorption

You conclude:

a v (a ˄ b) = a (13)

a

b

Q

a

Q

Second case:

a

You conclude:

a Λ (a v b) = a (14)

a

Q

Δ

Q

Δ

Fourth case:

Third case:

 You conclude:

a (a v b) = a Λ b (15)

a

Q

a b

Q

a

Δ b

a
a

Q

Δ

b

Q

You conclude:

a v (a ˄ b) = a v b (16)

a a a

b

b a b

Δ

Q

You conclude:

a v (a ˄ b) = a v b (17)

First case:

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 24

©LEARNCHANNEL-TV.COM
 Learnchannel

The rule of “de Morgan”

The De Morgan's rules are used to transforming of combinational circuits.

You conclude:

a Λ b = a V b (18)

K1

Q

a

Q

a

b
Δ

b

b

K1

Q

a

Q

a
b

Δ

You conclude:

a V b = a Λ b (19)

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 25

©LEARNCHANNEL-TV.COM
 Learnchannel

Furnace

16 kW

Furnace

12 kW

Furnace

8 kW

S1 S2 S3

H1
Max. Leistung
überschritten

5.4.2. Simplifying via KV-diagrams

KV diagrams are named after their discoverer Karnaugh and Veigh as Karnaugh Veigh diagrams. They

descend from set theory. The KV-diagrams can be applied to equations corresponding to the disjunctive

normal form!

How the KV-diagrams are structured and how to use them this is described in your Technical Data Manuals.

5.4.3. Exercises

Exercise 1:

Simplify the circuit `2 from 3` of the example above!

Exercise 2:

In order not to exceed the allowable electric power

consumption of a foundry, a detector should give a

signal when the power exceeds 22 kW. The rated

power of the three kilns are: P1 = 16 kW, P2 = 12 kW

und P3 = 8 kW.

Steps that you should follow:

1 Create a truth table.

2 Deduce a Boolean equation of this truth table.

3 Simplify, if possible, this equation by using KV-

diagrams

4 Create a circuit of logic gates.

Exercise 3: tank-emptying

A tank should be emptied by three switches which are mounted at

various locations. It should be able to switch the valve by a change-

over switch with three contacts

1. Determine the relation between the inputs S1, S2, S3, and the

output Y by using a function table.

2. Determine the logical equation.

3. Creating a logic circuit.

S1

S3

S2
1Y1

tank

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 26

©LEARNCHANNEL-TV.COM
 Learnchannel

Exercises – Timers and counter

Exercise 1 - Temperature sensor

 If a temperature sensor reports an elevated temperature (1 signal), then the indicator P1light will indicate

this after 5s, but only if the temperature after this time is still increased. Another lamp P2 shows the increase

in temperature also after 5 seconds, but, in contrast to the lamp P1, even if the temperature after 5s has

decreased again. A reset button S1 turns off the lamp P2.

Select the required contacts (NO / NC) and develop your program!

Symbol table:

Exercise 2 - Two handed control

A press is to be activated by a time-controlled two-hand control.

Note:

Left-hand button and right-hand button will always be pushed within a certain reaction time. However, this

reaction time should not exceed a certain value, otherwise manipulation of this equipment can be

suspected.

Variable Address Data Type Comment

B1 I124.0 Bool Tp.-Sensor

S2 I124.1 Bool reset

P1 Q124.0 Bool Lamp 1

P2 Q124.1 Bool Lamp 2

Variable Address Data Type

S1 I124.0 Bool

S2 I124.1 Bool

P1 Q124.1 Bool

S0 V S1

S0 & S1

t

Reaction time < 0,5 s

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 27

©LEARNCHANNEL-TV.COM
 Learnchannel

Exercise 3: moving lights with 3 LED’s

Tip: You may take a sequence control (particular knowledge see volume II) program, in which form the

individual time elements the transition condition for the next step. Each step is built by a SR-latch.

Exercise 4: Control for conveyor belt

A conveyor system for transporting bulk material is to be controlled. The system consisting of three
individual bands.

Start the conveyor system: About the button S1, the system is started. All three belts will commence
simultaneously.

Stop the conveyor system: To prevent material build-up, all belts should be emptied. The belts should be
switched-off with a time delay of 3 seconds of each other.

Fig.: Technology scheme:

Required: symbol table, program in FBD

1 0

START STOP

LED1 LED2 LED3

Belt 2 Belt 1 Belt 3

Material

Direction

Container

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 28

©LEARNCHANNEL-TV.COM
 Learnchannel

Exercise 5: control for a magazine

The level of the magazine is monitored by a light barrier. Before each new cycle 10 workpieces are inserted

into the magazine. Once the cylinder 1A extends, the count-value is decremented. If a sufficient number of

workpieces are in the magazine, then the indicator LED, Magazine’ is switched off. If the number of

workpieces is between 1 and 3, then should be signaled by a steady light of the indicator lamp H1 that the

magazine must be refilled. If the magazine is empty, this should be indicated by a flashing of the indicator

light.

After filling the button 'Reset' has to be pressed, so the equipment can continue its work process

automatically.

 Your program has to fulfill the following items:

• Increase the count by 1 with button UP '

• Reduce the count by 1 with button DOWN '

• Set the counter to 0 with button RESET '

• Set the counter to 10 with button FULL '

B4 2A1 B7

B1 B2

B3

10 workpieces are
loaded each time

1A

S4 magazine full
Zählerstand 4

UP

DOWN

RESET FULL

Magazine

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 29

©LEARNCHANNEL-TV.COM
 Learnchannel

5 * 10 0 = 5

0 * 10 1 = 0

2 * 10 2 = 200

Sum = 205

6. Introduction in number systems

Example: The device shown on the right counts

`smile’s`. The actual count value is `1 0`

How many smile´s you have indeed?

a) ☺☺☺☺☺ ☺☺☺☺☺

b) ☺☺☺☺ ☺☺☺☺ ☺☺☺☺ ☺☺☺☺

c) ☺☺

We are used to represent numerical values in the decimal system. But in automation technology the decimal

system is - just one of other equal number systems.

Characteristics of a number systems

All the number systems used today in have the following in common:

- The digit (for example 09, 0...f, etc.)

- The base

- The value within the number that means, which position takes the digit within the number?

In principle how the numerical value is formed, is for all number systems the same. This we want to know for

different number systems with different bases.

6.1. Decimal-system

The decimal system has the following characteristics:

- ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Base: 10

- Value: Powers to the base number 10: 1, 10, 100, 1000, etc.

 Example: 2 0 5

Die Darstellung der Zahl 205 ist in

Wirklichkeit eine abgekürzte Schreibweise

der Summe 200 + 0 + 5 = 205!

1 0

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 30

©LEARNCHANNEL-TV.COM
 Learnchannel

13 * 16 0 = 13

12 * 16 1 = 192

Sum = 205

6.2. Dual system

The functioning of the computer is based on the dual system. The dual system is based on the basis 2. The

base also determines the number of digits of the character set of the number system.

- two digits: 0, 1

- Base: 2

- Value: Powers to the base number 2: 1, 2, 4, 8, etc.

 Example: 1 1 0 0 1 1 0 1

The example shows that a binary number has greater number of digits than the corresponding decimal

number. With 8 digits binary numbers can be represented a number of value up to 255, with 16 digits up to

65 535.

6.3. Hexadecimal system

The Hexadecimal system has the number 16 for its base. As mentioned before, the base determines the

number of single digit of the character set - here we have the digits 0 through 9 and the letters A to F.

The hexadecimal system is used to represent with as few digits and characters large numbers. In

addition, a conversion of a binary number to hexadecimal number and vice versa is very simple.

 Digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

 Base: 16

 Value: Power to the base number 16

 Example: C D

1 * 2 0 = 1

0 * 2 1 = 0

1 * 2 2 = 4

Sum = 205

1 * 2 3 = 8

0 * 2 4 = 0

0 * 2 5 = 0

1 * 2 6 = 64

1 * 2 7 = 128

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 31

©LEARNCHANNEL-TV.COM
 Learnchannel

Relation between Dual code and Hexadecimal code:

When we compare the binary coded number ‘1100 1101’ with the number in

hex ‘CD’, we recognize, that always 4 binary digits build a hex digit. The reason

is that with 4 binary numbers exactly 16 numbers can be displayed (from 0 to

F).

Example: 1111 1111 1111 1111 Dual in Hex?

6.4. Binary coded Decimal (BCD)

The BCD-code converts each digit of a decimal numbers into a binary number and therefore is not another

number system. The BCD code is required primarily for inputs and outputs.

1100 1101 (2)

C

 D

Signal

PLC

IW 0

I 0.7 I 0.0 I 1.7 I 1.0

 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

1

+

6 4 0

+ + +

- - - -

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 32

©LEARNCHANNEL-TV.COM
 Learnchannel

This presentation is called Binary Coded Decimal or abbreviated BCD

code. The individual digits are encrypted with four binary digits (bits).

The representation with 4 bits results from the fact that the most

significant decimal digit (910) requires in the binary representation at

least 4 digits (1001).

For the presentation of the ten decimal digits 0 through 9 in BCD code

the same representation is used as for binary numbers from 0 ... 9. 6 Of

the 16 possible combinations with four binary digits the last 6

combination remain unused. We call these combinations "forbidden” and

call them pseudo tetrads.

Decimal Dual Hex. BCD-Code

1 1 1 0001

2 10 2 0010

3 11 3 0011

4 100 4 0100

5 101 5 0101

6 110 6 0110

7 111 7 0111

8 1000 8 1000

9 1001 9 1001

10 1010 A 0001 000

11 1011 B 0001 0001

12 1100 C 0001 0010

13 1101 D 0001 0011

14 1110 E 0001 0100

15 1111 F 0001 0101

16 1 0000 10 0001 0110

17 1 0001 11 0001 0111

18 1 0010 12 0001 1000

19 1 0011 13 0001 1001

20 1 0100 14 0010 0000

Decimal BCD-No

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10

Pseudo-
tetrads

11

12

13

14

15

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 33

©LEARNCHANNEL-TV.COM
 Learnchannel

6.5. Exercises number systems

1. Convert the number 5710 in dual.

2. Convert the number 810 in dual.

3. Convert the number 01112 in decimal.

4. Convert the number 100012 in decimal.

5. Convert the number 01112 in hexadecimal.

6. Convert the number 100012 in hexadecimal.

7. Convert the number 57 10 in hexadecimal.

8. Convert the number 810 in hexadecimal.

9. Convert the number A16 in dual.

10. Convert the number B16 in dual.

11. Convert the number A16 in decimal.

12. Convert the number B16 in decimal.

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 34

©LEARNCHANNEL-TV.COM
 Learnchannel

U I 124.0 // AND Input I124.0

S M 124.1 // Set flag M124.1

L IB 124 Lade Eingangsbyte 124
T QB 124 Transferiere in das Ausgangsbyte 124

L IW 124 Lade Eingangswort 124
T MW 100 Transferiere in Merkerwort

L W#16#ABBA Die Konstante mit dem Wert ABBAhex wird in Akku geladen
T DB1.DBD 0 Transferiere in DB 1 in Datendoppelword 0

7. Appendix

7.1. The most important data types

There are predefined elementary data types that can be used for programming in Step 7 in each program

block (OB, FC, FB):

1. Bool

The data type ‘BOOL’ represents a bit value. The value of this data type is either TRUE or FALSE (0 or 1).

The following operations take access of a single bit. Hereby the Bit is either read out or written.

Example:

2. Byte – Word - DWORD

This data bit sequences consists of 8, 16 or 32 bits and thus require 1, 2 or 4 bytes of memory space.

Example:

BYTE-Format

WORD-Format

DWORD-Format

5

Byte n

4

3

2

1

0

7

6

1
3

Byte n

1
2

1
1

1
0

9

8

1
5

1
4

5

Byte n + 1

4

3

2

1

0

7

6

2
1

Byte n + 1

2
0

1
9

1
8

1
7

1
6

2
3

2
2

2
9

Byte n

2
8

2
7

2
6

2
5

2
4

3
1

3
0

1
3

Byte n + 2

1
2

1
1

1
0

9

8

1
5

1
4

5

Byte n + 3

4

3

2

1

0

7

6

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 35

©LEARNCHANNEL-TV.COM
 Learnchannel

L 1999 load Integer 1999 in Akku 1

T MW 6 transfer integer from Akku 1 in flag word 6

L L#123456 load die D-Integer 123456 in Akku 1

T MD 100 transfer in Flag word

3. INT - DINT

Integers (INT) or double integer (DINT) represent whole numbers with a sign; they need 2 or 4 bytes of

memory space. The range of values is as follows:

INT from – 32768 / 8000hex to 32 767 (7FFFhex)

DINT from – 2 147 483 648 / 8000 0000 hex to 2 147 483 647 / 7FFF FFFF hex

The structure of integer numbers, that means, the position and significance of the individual bits in the

memory, is illustrated in the following graphic:

! Memory usage and value of an integer number behave oppositely.

Example:

INT-Format

DINT-Format

Das niedrige Byte beinhaltet die höherwertigen Exponenten!

Das niedrige Bytes beinhaltet die höherwertigen Exponenten!

Byte n + 1

5

4

3

2

1

0

7

6

2
5

2
4

2
3

2
2

2
1

2
0

2
7

2
6

Byte n

5

4

3

2

1

0

7

6

2
1
3

2
1
2

2
1
1

2
1
0

2
9

2
8

2
1
5

2
1
4

Byte n + 1

5

4

3

2

1

0

7

6

2
2
1

2
2
0

2
1
9

2
1
8

2
1
7

2
1
6

2
2
3

2
2
2

Byte n

5

4

3

2

1

0

7

6

2
2
9

2
2
8

2
2
7

2
2
6

2
2
5

2
2
4

V
Z

2

3
0

Byte n + 3

5

4

3

2

1

0

7

6

2
5

2
4

2
3

2
2

2
1

2
0

2
7

2
6

Byte n + 2

5

4

3

2

1

0

7

6

2
1
3

2
1
2

2
1
1

2
1
0

2
9

2
8

2
1
5

2
1
4

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 36

©LEARNCHANNEL-TV.COM
 Learnchannel

4. Real-Zahlen

A real number represents a floating point number which requires 32 bits or 4 bytes of memory space. The

highest bit (31) is reserved for the sign. This is followed by an exponent and a base.

The value range of a real number is shown in the following table:

negative from – 3,402823 * 10+38 to –1,175494 * 10-38

positive from 1,175494 * 10-38 to 3,402823 * 10+38

To enable the editor to recognize that he got a REAL number, you must enter a decimal point (even if this

should be 0) or alternative use the exponential notation:

Example: L 1.0 becomes L 1.000000e+000

L 0.1 become L 1.000000e-001

L 2e2 becomes L 2.000000e+002

5. CHAR

A variable of the data type ‘CHAR’ occupies one byte memory. It contains a character in the ASCII format.

Enter a single character as follows:

Example: L ' A ' loads the character ‘A’ right-aligned in Akku 1

L ' AB ' loads the character A and B right-aligned in den Akku 1

L ' ABCD ' loads the character A, B, C and D in Akku 1.

REAL-Format

Byte n + 1

2
1

2
0

1
9

1
8

1
7

1
6

2
3

2
2

2
2
1

2
2
0

2
1
9

2
1
8

2
1
7

2
1
6

2
2
3

2
2
2

Byte n

2
9

2
8

2
7

2
6

2
5

2
4

3
1

3
0

2

2
9

2
2
8

2
2
7

2
2
6

2
2
5

2
2
4

V
Z

2

3
0

Byte n + 3

5

4

3

2

1

0

7

6

2
5

2
4

2
3

2
2

2
1

2
0

2
7

2
6

Byte n + 2

1
3

1
2

1
1

1
0

9

8

1
5

1
4

2

1
3

2
1
2

2
1
1

2
1
0

2
9

2
8

2
1
5

2
1
4

Basis Exponent VZ

 Basic curse

Programmable logic

control

Only for private use!

Script_PLC_modul I.doc

 37

©LEARNCHANNEL-TV.COM
 Learnchannel

6. S5TIME

The data type S5TIME is used together with the S5-

timers and represents a BCD-coded time value.

The first Byte of the determined time frame.

Data type description No. of

Bits

Format, range

BOOL single Bit 1 true / false

BYTE next larger unit of information 8 B#16#00 … B#16#FF

WORD 2 Bytes Δ 1 WORD 16 2#0000_0000_0000_0000 bis

2#1111_1111_1111_1111

DWORD double Word

2 WORD Δ 1 DWORD

32 DW#16#00000000 … DW#16#FFFFFFFF

INT Integer 16 -32768 …0 … 32768

DINT Long integer 32 L#-2147483648 ... L#0 … L#2147483648

REAL floating-point number 32

S5TIME Time value Simatic 16 S5T#1h33m22s, S5 T#11ms

COUNT VALUE Count value Simatic 16 C#0, C#999

TIME Time value IEC 32 T#-24d20h31m23s647ms

TIME# -24d20h31m23s647ms

T#-24.855134d

TIME#-24.855134d

DATE Date 16 D#2013-12-31

DATE#2013-12-31

CHAR ASCII-character 8 ‚U‘ ‚H‘

STRING ASCII-string variable brasil

ARRAY Data field variable Depends on the number and def. of the components

STRUCT Data structure variable Depends on the number and def. of the components

TIME_OF_DAY Time of day 32 TOD#2013-12-31-22:59:59.999

DATE_AND_TIME#2013-12-31-22:59:59.999

DATE Date 16 D#2013-11-30

DATE#2013-11-30

DATE_AND_TIME Date and time 64 DT#2013-12-11-09:33:12.000

DATE_AND_TIME#2013-12-11-09:33:12.000

S5TIME-Format

Byte n + 1

5

4

3

2

1

0

7

6

Byte n

1
3

1
2

1
1

1
0

9

8

1
5

1
4

Zeitraster

Zeitraster = 1

Zeitraster = 2

Zeitraster = 3

* 100

* 100

* 1000

* 10

* 1 Zeitraster = 0
Basiswert für die Zeit

sind 10 ms:

0001 hex = 10 ms

3999hex =

2h26min30s

